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Abstract

Video super-resolution (VSR) aims to restore a sequence
of high-resolution (HR) frames from their low-resolution
(LR) counterparts. Although some progress has been made,
there are grand challenges to effectively utilize temporal de-
pendency in entire video sequences. Existing approaches
usually align and aggregate video frames from limited ad-
jacent frames (e.g., 5 or 7 frames), which prevents these
approaches from satisfactory results. In this paper, we
take one step further to enable effective spatio-temporal
learning in videos. We propose a novel Trajectory-aware
Transformer for Video Super-Resolution (TTVSR). In par-
ticular, we formulate video frames into several pre-aligned
trajectories which consist of continuous visual tokens. For
a query token, self-attention is only learned on relevant vi-
sual tokens along spatio-temporal trajectories. Compared
with vanilla vision Transformers, such a design signifi-
cantly reduces the computational cost and enables Trans-
formers to model long-range features. We further pro-
pose a cross-scale feature tokenization module to over-
come scale-changing problems that often occur in long-
range videos. Experimental results demonstrate the supe-
riority of the proposed TTVSR over state-of-the-art mod-
els, by extensive quantitative and qualitative evaluations
in four widely-used video super-resolution benchmarks.
Both code and pre-trained models can be downloaded at
https://github.com/researchmm/TTVSR.

1. Introduction
Video super-resolution (VSR) aims to recover a high-

resolution (HR) video from a low-resolution (LR) counter-

part [39]. As a fundamental task in computer vision, VSR is

usually adopted to enhance visual quality, which has great

value in many practical applications, such as video surveil-

lance [48], high-definition television [10], and satellite im-

agery [6, 27], etc. From a methodology perspective, unlike

image super-resolution that usually learns on spatial dimen-

*This work was done while Chengxu Liu was a research intern at Mi-

crosoft Research Asia.

Target Frame 57 Frame 61

IconVSRMuCAN TTVSR(Ours) GT

Frame 64

Figure 1. A comparison between TTVSR and other SOTA meth-

ods: MuCAN [24] and IconVSR [4]. We introduce finer textures

for recovering the target frame from the boxed areas (indicated by

yellow) tracked by the trajectory (indicated by green).

sions, VSR tasks pay more attention to exploiting temporal

information. In Fig. 1, if detailed textures to recover the

target frame can be discovered and leveraged at relatively

distant frames, video qualities can be greatly enhanced.

To solve this challenge, recent years have witnessed an

increasing number of VSR approaches, which can be cate-

gorized into two paradigms. The former makes attempts to

utilize adjacent frames as inputs (e.g., 5 or 7 frames), and

align temporal features in an implicit [18, 23] or explicit

manners [34, 39]. One of the classic works is EDVR that

adopts deformable convolutions to capture features within

a sliding window [39]. However, larger window sizes will

dramatically increase computational costs which makes this

paradigm infeasible to capture distant frames. The lat-

ter investigates temporal utilization by recurrent mecha-

nisms [4, 32, 44]. One of the representative works is Icon-

VSR that uses a hidden state to convey relevant features

from entire video frames [4]. Nonetheless, recurrent net-

works usually lack long-term modeling capability due to

vanishing gradient [12], which inevitably leads to unsatis-

fied results as shown in Fig. 1.

Inspired by the recent progress of Transformer in nat-

ural language processing [36], significant progresses have

been made in both visual recognition [3, 8] and generation

tasks [43, 46]. For example, MuCAN proposes to use at-

tention mechanisms to aggregate inter-frame features [24]
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for VSR tasks. However, due to the high computational

complexity in a video, it only learns from a narrow tem-

poral window, which results in sub-optimal performance as

shown in Fig. 1. Therefore, exploring proper ways of utiliz-

ing Transformers in videos remains a big challenge.

In this paper, we propose a novel Trajectory-aware

Transformer to enable effective video representation learn-

ing for Video Super-Resolution (TTVSR). The key insight

of TTVSR is to formulate video frames into pre-aligned

trajectories of visual tokens, and calculate Q, K, and V in

the same trajectory. In particular, we learn to link relevant

visual tokens together along temporal dimensions, which

forms multiple trajectories to depict object motions in a

video (e.g., the green trajectory in Fig. 1). We update to-

ken trajectories by a proposed location map that online ag-

gregates pixel motions around a token by average pooling.

Once video trajectories have been learned, TTVSR calcu-

lates self-attention only on the most relevant visual tokens

that are located in the same trajectory. Compared with Mu-

CAN that calculates attention across visual tokens in space

and time [24], the proposed TTVSR significantly reduces

the computational cost and thus makes long-range video

modeling practicable.

To further deal with the scale-changing problem that of-

ten occur in long-range videos (e.g., the yellow boxes in

Fig. 1), we devise a cross-scale feature tokenization module

and enhance feature representations from multiple scales.

Our contributions are summarized as follows:

• We propose a novel trajectory-aware Transformer,

which is one of the first works to introduce Trans-

former into video super-resolution tasks. Our method

significantly reduces computational costs and enables

long-range modeling in videos.

• Extensive experiments demonstrate that the proposed

TTVSR can significantly outperform existing SOTA

methods in four widely-used VSR benchmarks. In

the most challenging REDS4 dataset, TTVSR gains

0.70db and 0.45db PSNR improvements than Ba-

sicVSR and IconVSR, respectively.

2. Related Work

2.1. Video Super-Resolution

In VSR tasks, it is crucial to assist frame recovery with

other frames in the sequence. Therefore, according to the

number of input frames, VSR tasks can be mainly divided

into two kinds of paradigms: based on sliding-window

structure [1, 2, 15, 19, 20, 24, 34, 39, 41, 45] and based on

recurrent structure [4, 9, 11, 13, 14, 16, 32, 44].

Sliding-window structure. The methods based on sliding-

window structure use adjacent frames within a sliding win-

dow as inputs to recover the HR frame (e.g., 5 or 7 frames).

They mainly focus on using 2D or 3D CNN [15,17,18,23],

optical flow estimation [1, 20, 33] or deformable convolu-

tions [5, 34, 39] to design advanced alignment modules and

fuse detailed textures from adjacent frames. Typically, to

fully utilize the complementary information across frames,

FSTRN [23] presented a fast spatio-temporal residual net-

work for VSR by adopting 3D convolutions [35]. To bet-

ter align adjacent frames, VESCPN [1] introduced a spatio-

temporal sub-pixel convolution network and first combined

the motion compensation and VSR together. EDVR [39]

and TDAN [34] used deformable convolutions [5] to align

adjacent frames. However, they cannot utilize textures at

other moments, especially in relatively distant frames.

Recurrent structure. Rather than aggregating information

from adjacent frames, methods based on recurrent structure

use a hidden state to convey relevant information in pre-

vious frames. FRVSR [32] used the previously SR frame

to recover the subsequent frame. Inspired by the back-

projection, RBPN [11] treated each frame as a separate

source, which is combined in an iterative refinement frame-

work. RSDN [14] divided the input into structure and detail

components and proposed the two-steam structure-detail

block to learn textures. Representatively, OVSR [44], Ba-

sicVSR [4], and IconVSR [4] fused the bidirectional hid-

den state from the past and future for reconstruction and got

significant improvements. They try to fully utilize the in-

formation of the whole sequence and synchronously update

the hidden state by the weights of reconstruction network.

However, due to the vanishing gradient [12], this mecha-

nism makes the updated hidden state loses the long-term

modeling capabilities to some extent.

2.2. Vision Transformer

Recently, Transformer [36] has been proposed to im-

prove the long-term modeling capabilities of sequence in

various fields [7, 8]. In the field of computer vision [8],

Transformer is used as a new attention-based module to

model relationships between tokens in many image-based

tasks, such as classification [8], inpainting [46], super-

resolution [43], generation [47] and so on. Typically,

ViT [8] unfolded an image into patches as tokens for at-

tention to capture the long-range relationship in high-level

vision. TTSR [43] proposed a texture Transformer in low-

level vision to search relevant texture patches from Ref im-

age to LR image.

In VSR tasks, VSR-Transformer [2] and MuCAN [24]

tried to use attention mechanisms for aligning different

frames with great success. However, due to the heavy com-

putational costs of attention calculation on videos, these

methods only aggregate information on the narrow temporal

window. Therefore, in this paper, we introduce a trajectory-

aware Transformer to improve the long-term modeling ca-

pabilities for VSR tasks while keeping the computational

cost of attention within an acceptable range.
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Figure 2. The overview of TTVSR based on location maps. Q, K and V are tokens from video frames extracted by embedding networks

φ(·) and ϕ(·), respectively. τi indicates a trajectory of T . L is the set of location map generated by the motion estimation network H.

The dotted lines indicates the indexing operation from K and V by location maps L and hard index h. R(·) represents the reconstruction

network followed by a pixel-shuffle layer to resize feature maps to the desired size. U(·) represents the bicubic upsampling operation. �
and ⊕ indicate multiplication and element-wise addition, respectively.

3. Our Approach
In this section, we first introduce the proposed

Trajectory-aware Transformer for Video Super-Resolution

(TTVSR) in Sec. 3.1, and then discuss the proposed location

map for trajectory generation in Sec. 3.2. Finally, we refo-

cus to our Transformer design based on the location maps

and discuss its advantages in Sec. 3.3.

3.1. Trajectory-Aware Transformer

We introduce the formulation of the TTVSR firstly, fol-

lowed by trajectory-aware attention and cross-scale feature

tokenization. More illustrations can be found in Fig. 2.

Formulation. Given a LR sequence, the goal of VSR tasks

is to recover a HR version. Specifically, for our task, when

restoring the T th frame ITSR, we denote the current LR frame

as ITLR and other LR frames as ILR = {ItLR, t ∈ [1, T−1]}.

We use two embedding networks φ(·) and ϕ(·) to get

features from video frames and extract tokens by sliding-

windows. The queries Q and keys K are extracted by φ(·)
and denoted as Q = φ(ILR) = {qTi , i ∈ [1, N ]} and K =
φ(ILR) = {kti , i ∈ [1, N ], t ∈ [1, T −1]}, respectively. The

values are extracted by ϕ(·) and denoted as V = ϕ(ILR) =
{vti , i ∈ [1, N ], t ∈ [1, T − 1]}.

The trajectories T in our approach can be formulated as

a set of trajectory, in which each trajectory τi is a sequence

of coordinate over time and the end point of trajectory τi is

associated with the coordinate of token qi:

T = {τi, i ∈ [1, N ]},
τi = 〈τ ti = (xt

i, y
t
i), t ∈ [1, T ]〉,

(1)

where xt
i ∈ [1, H], yti ∈ [1,W ], and (xt

i, y
t
i) represents the

coordinate of trajectory τi at time t. H and W represents

the height and width of the feature maps, respectively.

From the aspect of trajectories, the inputs of proposed

trajectory-aware transformer can be further represented as

visual tokens which are aligned by trajectories T :

T = {τi, i ∈ [1, N ]},
Q = {qτT

i
, i ∈ [1, N ]},

K = {kτt
i
, i ∈ [1, N ], t ∈ [1, T − 1]},

V = {vτt
i
, i ∈ [1, N ], t ∈ [1, T − 1]}.

(2)

The process of recovering the T th HR frame ITSR can be

further expressed as:

ITSR = Ttraj(Q,K,V, T )

= R(Atraj
τi∈T

(qτT
i
, kτt

i
, vτt

i
)) + U(ITLR),

(3)

where Ttraj(·) denotes the trajectory-aware Transformer.

Atraj(·) denotes the trajectory-aware attention. R(·) repre-

sents the reconstruction network followed by a pixel-shuffle

layer to resize feature maps to the desired size. U(·) repre-

sents the bicubic upsampling operation.

By introducing trajectories into Transformer, the atten-

tion calculation on K and V can be significantly reduced

because it can avoid the computation on spatial dimension

compared with vanilla vision Transformers.

Trajectory-aware attention. Thanks to the powerful long-

range model ability, the attention mechanisms in vanilla vi-

sion Transformer is used to model dependencies of tokens

within an image [3, 8]. However, empowering the attention

mechanisms to videos remains a challenge. Thus, we pro-

pose a trajectory-aware attention module, which integrates

relevant visual tokens located in the same spatio-temporal

trajectories with less computational costs.
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Different from the traditional attention mechanisms that

take a weighted sum of keys in temporal. We use hard at-

tention to select the most relevant token along trajectories,

its purpose is to reduce blur introduced by weighted sum.

We use soft attention to generate the confidence of relevant

patches, it is used to reduce the impact of irrelevant tokens

when hard attention gets inaccurate results. We use hτi and

sτi to represent the results of hard and soft attention. The

calculation process can be formulated as:

hτi = argmax
t

〈
qτT

i

‖ qτT
i
‖2
2

,
kτt

i

‖ kτt
i
‖2
2

〉,

sτi = max
t

〈
qτT

i

‖ qτT
i
‖2
2

,
kτt

i

‖ kτt
i
‖2
2

〉.
(4)

Based on such formula, the attention calculation in Equ. 3

can be formulated as:

Atraj(qτT
i
, kτi , vτi) = C(qτT

i
, sτi � v

τ
hτi
i

), (5)

where the operator � denotes multiplication. C(·) denotes

the concatenation operation. We fold all the tokens and out-

put a feature map.

In general, in the proposed trajectory-aware attention, we

integrate features from the whole sequence. Such a design

allows attention calculation only along its spatio-temporal

trajectory, mitigating the computational cost.

Cross-scale feature tokenization. The premise of utiliz-

ing multi-scale texture from sequences is that the model can

adapt to the multi-scale variations in content that often oc-

cur. Therefore, we propose a cross-scale feature tokeniza-

tion module before trajectory-aware attention to extract to-

kens from multiple scales. It can uniform multi-scale fea-

tures into a uniform-length token and allows rich textures

from larger scales to be utilized for the recovery of smaller

ones in the attention mechanism.

Specifically, we follow three steps to extract tokens.

First, the successive unfold and fold operations are used

to expand the receptive field of features. Second, features

from different scales are shrunk to the same scale by a pool-

ing operation. Third, the features are split by unfolding op-

eration to obtain the output tokens. It is noteworthy that

this process can extract features from a larger scale while

keeping the same size as output tokens. It is convenient for

attention calculation and token integration. More analyses

can be found in the supplementary.

3.2. Location Maps for Trajectory Generation

Existing approaches use feature alignment and global

optimization to calculate trajectories of video which are

time-consuming and less efficient [30, 37, 38]. Especially

in our task, trajectories are updated over time, the computa-

tion cost will be further exploded. To solve this problem, we

3,3
4,3

5,5

3,34,35,5

...

...

Time 1 Time t Time T

...

...

Figure 3. An illustration of the relationship between trajectory τ
and the location maps L at time t.

propose a location map for trajectory generation in which

the location maps are represented as a group of matrices

over time. By such a design, the trajectory generation can

be expressed as some matrix operations which are both effi-

cient for computing and friendly for model implementation.

Since the trajectories are updated over time, our location

maps need also to be updated accordingly. In the formula-

tion of it, we fix the time to T for better illustration. The

proposed location maps can be formulated as:

Lt =

⎡
⎣
(x1, y1) . . . (x1, yW )
. . . . . . . . .

(xH , y1) . . . (xH , yW )

⎤
⎦ , t ∈ [1, T ], (6)

where Lt
m,n represents the coordinate at time t in a trajec-

tory which is ended at (m,n) at time T . The relationship

between the location map Lt
m,n and the trajectory τ ti de-

fined in Equ. 1 can be further expressed as:

Lt
m,n = τ ti , where τTi = (m,n), i ∈ [1, N ], (7)

where m ∈ [1, H] and n ∈ [1,W ]. In Fig. 3, we use a

simple case to further illustrate the relationship between lo-

cation maps and trajectories.

Location map updating. As discussed in the formulation

part, the location maps will change over time. We denotes

the updated location maps as ∗Lt. When changing from

time T to time T + 1, a new location map ∗LT+1 at time

T + 1 should be initialized. Based on Equ. 7, the element

values of ∗LT+1 are exactly the coordinates of frame T+1 1.

Then the rest updated location maps {∗L1, · · · , ∗LT } can

be obtained by tracking the location maps {L1, · · · ,LT }
from time T + 1 to time T using backward flow OT+1.

Specifically, OT+1 can build the connection of trajecto-

ries between time T and time T + 1 and obtain from a

lightweight motion estimation network. Due to the correla-

tions in flow are usually float numbers, we get the updated

coordinates in location map Lt by interpolating between its

adjacent coordinates:

∗Lt = S(Lt, OT+1), (8)

1Where the element values of the matrix are equal to the index matrix.
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where S(·) represents the spatial sampling operation by spa-

tial correlation OT+1 (i.e., grid sample in PyTorch). Thus

far, we have all the updated location maps for time T + 1.

With the careful design of the location maps, the trajec-

tories in our proposed trajectory-aware Transformer can be

effectively calculated and maintained through one parallel

matrix operation (i.e., the operation S(·)). More analyses

can be found in the supplementary.

3.3. TTVSR based on Location Maps

In this section, we recap the formulation of our proposed

TTVSR in Sec. 3.1 and show the relation between TTVSR

and location maps in a more intrinsical way. More details

can be found in Fig. 2. Since the location map Lt in Equ. 7

is an interchangeable formulation of trajectory τi in Equ. 3,

the proposed TTVSR can be further expressed as:

ITSR = Ttraj(Q,K,V,L)
= R(Atraj

t,m,n

(qLT
m,n

, kLt
m,n

, vLt
m,n

)) + U(ITLR),
(9)

where m ∈ [1, H], n ∈ [1,W ], and t ∈ [1, T − 1].
In this formulation, we transform the coordinate system

in our transformer from the one defined by trajectories to

a group of aligned matrices (i.e., the location maps). Such

a design has two advantages: First, the location maps pro-

vide a more efficient way to enable our TTVSR can directly

leverage the information from a distant video frame. Sec-

ond, as the trajectory is a widely used concept in videos,

our design can motivate other video tasks to achieve a more

efficient and powerful implementation.

3.4. Training Details

For fair comparisons, we follow IconVSR [4] and VSR-

Transformer [2] to use the same feature extraction network,

reconstruction network, and pre-trained SPyNet [31] for

motion estimation. To leverage the information of the whole

sequence, we follow previous works [4, 13] to adopt a bidi-

rectional propagation scheme, where the features in differ-

ent frames can be propagated backward and forward, re-

spectively. To reduce consumption in terms of time and

memory, we generate the visual tokens of different scales

from different frames. Features from adjacent frames are

finer, so we generate tokens of size 1 × 1. Features from

a long distance are coarser, so we select these frames at a

certain time interval and generate tokens of size 4× 4. Be-

sides, in Sec. 3.1, we use kernels of size 4 × 4, 6 × 6, and

8 × 8 for cross-scale feature tokenization. During train-

ing, we use Cosine Annealing scheme [26] and Adam [21]

optimizer with β1 = 0.9 and β2 = 0.99. The learning

rates of the motion estimation and other parts are set as

1.25 × 10−5 and 2 × 10−4, respectively. We set the batch

size as 8 and input patch size as 64× 64. To keep fair com-

parison, we augment the training data with random hori-

zontal flips, vertical flips, and 90◦ rotations. Besides, to

enable long-range sequence capability, we use sequences

with a length of 50 as inputs. The Charbonnier penalty

loss [22] is applied on whole frames between the ground-

truth IHR and restored SR frame ISR, which can be defined

by � =
√

‖IHR − ISR‖2 + ε2. To stabilize the training of

TTVSR, we fix the weights of the motion estimation mod-

ule in the first 5K iterations, and make it trainable later. The

total number of iterations is 400K.

4. Experiments

4.1. Datasets and Metrics

We evaluate the proposed TTVSR and compare its per-

formance with other SOTA approaches on two widely-used

datasets: REDS [29] and Vimeo-90K [42]. For REDS [29],

it is published in the NTIRE19 challenge [29]. It contains a

total of 300 video sequences, in which 240 for training, 30

for validation, and 30 for testing. Each sequence contains

100 frames with a resolution of 720×1280. To create train-

ing and testing sets, we follow previous works [4, 24, 39]

to select four sequences2 as the testing set which is called

REDS4 [29]. And we select the rest 266 sequences from the

training and validation set as the training set. For Vimeo-
90K [42], it contains 64,612 sequences for training and

7,824 for testing. Each sequence contains seven frames with

a resolution of 448 × 256. For fair comparison, we fol-

low previous works [4] to evaluate TTVSR with 4× down-

sampling by using two degradations: 1) MATLAB bicubic

downsample (BI), and 2) Gaussian filter with a standard de-

viation of σ = 1.6 and downsampling (BD). Same with

previous works [14,15,24,34], we apply the BI degradation

on REDS4 [29] and BD degradation on Vimeo-90K-T [42],

Vid4 [25] and UDM10 [45]. We keep the same evaluation

metrics: 1) Peak signal-to-noise ratio (PSNR) and 2) struc-

tural similarity index (SSIM) [40] as previous works [4,24].

4.2. Comparisons with State-of-the-art Methods

We compare TTVSR with 15 start-of-the-art meth-

ods. These methods can be summarized into three cate-

gories: single image super-resolution (SISR) [28, 49], slid-

ing window-based [2, 15, 17, 24, 34, 39, 42], and recurrent

structure-based [4, 9, 11, 14, 32]. For fair comparisons, we

obtain the performance from their original paper or repro-

duce results by authors officially released models.

Quantitative comparison. We compare TTVSR with other

SOTA methods on the most widely-used REDS dataset [29].

As shown in Tab. 1, we categorize these approaches ac-

cording to the frames used in each inference. Among

them, since only one LR frame is used, the performance

of SISR methods [28, 49] is very limited. MuCAN [24]

2Clips 000,011,015,020 of the REDS training set.
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Table 1. Quantitative comparison (PSNR↑ and SSIM↑) on the REDS4 [29] dataset for 4× video super-resolution. The results are tested on

RGB channels. Red indicates the best and blue indicates the second best performance (best view in color). #Frame indicates the number

of input frames required to perform an inference, and “r” indicates to adopt the recurrent structure.

Method #Frame Clip 000 Clip 011 Clip 015 Clip 020 Average

Bicubic 1 24.55/0.6489 26.06/0.7261 28.52/0.8034 25.41/0.7386 26.14/0.7292

RCAN [49] 1 26.17/0.7371 29.34/0.8255 31.85/0.8881 27.74/0.8293 28.78/0.8200

CSNLN [28] 1 26.17/0.7379 29.46/0.8260 32.00/0.8890 27.69/0.8253 28.83/0.8196

TOFlow [42] 7 26.52/0.7540 27.80/0.7858 30.67/0.8609 26.92/0.7953 27.98/0.7990

DUF [17] 7 27.30/0.7937 28.38/0.8056 31.55/0.8846 27.30/0.8164 28.63/0.8251

EDVR [39] 7 28.01/0.8250 32.17/0.8864 34.06/0.9206 30.09/0.8881 31.09/0.8800

MuCAN [24] 5 27.99/0.8219 31.84/0.8801 33.90/0.9170 29.78/0.8811 30.88/0.8750

VSR-T [2] 5 28.06/0.8267 32.28/0.8883 34.15/0.9199 30.26/0.8912 31.19/0.8815

BasicVSR [4] r 28.39/0.8429 32.46/0.8975 34.22/0.9237 30.60/0.8996 31.42/0.8909

IconVSR [4] r 28.55/0.8478 32.89/0.9024 34.54/0.9270 30.80/0.9033 31.67/0.8948

TTVSR r 28.82/0.8566 33.47/0.9100 35.01/0.9325 31.17/0.9094 32.12/0.9021

Table 2. Quantitative comparison (PSNR↑ and SSIM↑) on

Vid4 [25], UDM10 [45] and Vimeo-90K-T [42] dataset for 4×
video super-resolution. All the results are calculated on Y-channel.

Red indicates the best and blue indicates the second best perfor-

mance (best view in color).

Method Vid4 [25] UDM10 [45] Vimeo-90K-T [42]

Bicubic 21.80/0.5246 28.47/0.8253 31.30/0.8687

TOFlow [42] 25.85/0.7659 36.26/0.9438 34.62/0.9212

FRVSR [32] 26.69/0.8103 37.09/0.9522 35.64/0.9319

DUF [17] 27.38/0.8329 38.48/0.9605 36.87/0.9447

RBPN [11] 27.17/0.8205 38.66/0.9596 37.20/0.9458

RLSP [9] 27.48/0.8388 38.48/0.9606 36.49/0.9403

EDVR [39] 27.85/0.8503 39.89/0.9686 37.81/0.9523

TDAN [34] 26.86/0.8140 38.19/0.9586 36.31/0.9376

TGA [15] 27.59/0.8419 39.05/0.9634 37.59/0.9516

RSDN [14] 27.92/0.8505 39.35/0.9653 37.23/0.9471

BasicVSR [4] 27.96/0.8553 39.96/0.9694 37.53/0.9498

IconVSR [4] 28.04/0.8570 40.03/0.9694 37.84/0.9524

TTVSR 28.40/0.8643 40.41/0.9712 37.92/0.9526

and VSR-T [2] use attention mechanisms in sliding win-

dow, which has a significant improvement over the SISR

methods. However, they do not fully utilize the informa-

tion of the sequence. BasicVSR [4] and IconVSR [4] try to

model the whole sequence through hidden states. Nonethe-

less, the well-known vanishing gradient issue limits their

capabilities of long-term modeling, thus the information at a

distance will be lost. Different from them, our TTVSR tries

to link the relevant visual token together along the same tra-

jectory in an efficient way. TTVSR also uses the whole

sequence information to recover the lost textures. Due to

such merits, TTVSR achieves a result of 32.12dB PSNR

and significantly outperforms IconVSR [4] by 0.45dB on

the REDS4 [29]. This large margin demonstrates the power

of TTVSR in long-range modeling.

To further verify the generalization capabilities of

TTVSR, we train TTVSR on Vimeo-90K dataset [42], and

evaluate the results on Vid4 [25], UDM10 [45], and Vimeo-

90K-T datasets [42], respectively. As shown in Tab. 2,

Table 3. Comparison of params, FLOPs and numbers. FLOPs is

computed on one LR frame with the size of 180 × 320 and ×4
upsampling on the REDS4 [29] dataset.

Method #Params(M) FLOPs(T) PSNR/SSIM

DUF [17] 5.8 2.34 28.63/0.8251

RBPN [11] 12.2 8.51 30.09/0.8590

EDVR [39] 20.6 2.95 31.09/0.8800

MuCAN [24] 13.6 >1.07 30.88/0.8750

BasicVSR [4] 6.3 0.33 31.42/0.8909

IconVSR [4] 8.7 0.51 31.67/0.8948

TTVSR 6.8 0.61 32.12/0.9021

on the Vid4 [25], UDM10 [45], and Vimeo-90K-T [42]

test sets, TTVSR achieves the results of 28.40dB, 40.41dB,

and 37.92dB in PSNR respectively, which is superior to

other SOTA methods. Specifically, on the Vid4 [25] and

UDM10 [45] datasets, TTVSR outperforms IconVSR [4]

by 0.36dB and 0.38dB respectively. At the same time, we

notice that compared with the evaluation on Vimeo-90K-

T [42] dataset with only seven frames in each testing se-

quence, TTVSR has a better improvement on other datasets

which have at least 30 frames per video. The results ver-

ify that TTVSR has strong generalization capabilities and is

good at modeling the information in long-range sequences.

Qualitative comparison. To further compare visual qual-

ities of different approaches, we show visual results gener-

ated by TTVSR and other SOTA methods on four different

test sets in Fig. 4. For fair comparisons, we either directly

take the original SR images of the author-released or use

author-released models to get results. It can be observed

that TTVSR has a great improvement in visual quality, es-

pecially for areas with detailed textures. For example, in

the fourth row in Fig. 4, TTVSR can recover more striped

details from the stonework in the oil painting. The results

verify that TTVSR can utilize textures from relevant tokens

to produce finer results. More visual results can be found in

the supplementary materials.

Model sizes and computational costs. In real applica-
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Frame 024, Clip 000 TOFlow DUF EDVR MuCAN BasicVSR IconVSR TTVSR GT

Frame 010, Clip 011 TOFlow DUF EDVR MuCAN BasicVSR IconVSR TTVSR GT

Frame 009, Clip 015 TOFlow DUF EDVR MuCAN BasicVSR IconVSR TTVSR GT

Frame 060, Clip 020 TOFlow DUF EDVR MuCAN BasicVSR IconVSR TTVSR GT

Frame 007, Clip city DUF EDVR RBPN TDAN BasicVSR IconVSR TTVSR GT

Frame 022, Clip clap DUF EDVR RBPN TDAN BasicVSR IconVSR TTVSR GT

Seq. 00085, Clip 0723 DUF EDVR RBPN TDAN BasicVSR IconVSR TTVSR GT

Figure 4. Visual results on REDS4 [29], Vid4 [25], UDM10 [45] and Vimeo-90K-T [42] for 4× scaling factor. The frame number is shown

at the bottom of each case. Zoom in to see better visualization.

tions, model sizes and computational costs are usually im-

portant. To avoid the gap between different hardware de-

vices, we use two hardware-independent metrics, including

the number of parameters (#Params) and FLOPs. As shown

in Tab. 3, the FLOPs are computed with the input of LR

size 180 × 320 and ×4 upsampling settings. Compared

with IconVSR [4], TTVSR achieves higher performance

while keeping comparable #Params and FLOPs. Besides, it

should be emphasized that our method is much lighter than

MuCAN [24] which is the SOTA attention-based method.

Such superior performances mainly benefit from the use of

trajectories in attention calculation which significantly re-

duces computational costs.

4.3. Ablation Study

In this section, we conduct the ablation study on the pro-

posed trajectory-aware attention and study the influence of

frames number used in this module. In addition, we further

analyze the effect of the cross-scale feature tokenization.

Trajectory-aware attention. Trajectory generation (TG)

Table 4. Ablation study results of trajectory-aware attention mod-

ule on the REDS4 [29] dataset. TG: trajectory generation. TA:

trajectory-aware attention.

Method TG TA PSNR/SSIM

Base 30.46/0.8661

Base+TG � 31.91/0.8985

Base+TG+TA � � 31.99/0.9007

is a prerequisite for trajectory-aware attention (TA), so we

study them together in this part. We directly use con-

volution layers to integrate the aligned previous tokens

and current token as our “Base” model. We denote the

model that aggregates the most relevant tokens on the tra-

jectory as our “Base+TG” model. We denote the model

that adds trajectory-aware attention progressively as our

“Base+TG+TA” model. The results are shown in Tab. 4.

With the addition of TG, PSNR can be improved from 30.46

to 31.91, which verifies that the trajectory can link relevant

visual tokens together precisely. When TA is involved, we

integrate tokens from trajectories, and the performance is

improved to 31.99. This demonstrates the superiority of TA
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Table 5. Ablation study results of the frame number used on the

REDS4 [29] dataset.

#Frame 5 10 20 33 45

PSNR 31.89 31.93 31.97 31.99 32.01

SSIM 0.8984 0.8994 0.9005 0.9007 0.9004

GTBase+TG Base+TG+TABase
Figure 5. Ablation study on the trajectory generation (TG) and

trajectory-aware attention (TA) on the REDS4 [29] dataset.

for modeling long-range information. We further explore

the visual differences as shown in Fig. 5. TG can capture

the relevant tokens, while TA integrates tokens into the cur-

rent frame to produce clearer textures.

Influence of frame number during inference. To explore

the influence of the frame number used during inference on

the ability of modeling long-range sequences. As shown in

Tab. 5, we use different temporal intervals to sample frames

from the entire sequence (100 frames). The performance is

positively correlated with the number of sampled frames. It

demonstrates the effectiveness of the trajectory-aware atten-

tion module for long-range modeling. However, the perfor-

mance gain gradually decreases when the frame number is

more than 45. It indicates that choosing three as the tempo-

ral interval (i.e., 33 frames) is sufficient to model the entire

sequences. Using smaller intervals may not provide more

information since the adjacent frames are too similar.

Cross-scale feature tokenization. To alleviate the scale-

changing problem in sequences, we discuss the impact of

token size in the cross-scale feature tokenization (CFT). As

shown in Tab. 6, the first three rows of results show that CFT

can extract richer textures as the token scale increases. The

performance can improve PSNR from 31.99 to 32.12, indi-

cating that CFT can adapt to scale changes in sequences. In

addition, according to the visualizations, as shown in Fig. 6,

cross-scale feature tokenization can introduce finer textures

from a larger scale, avoiding the loss of textures caused by

scale-changing in long-range sequences. It is also observed

that using the larger scale (e.g., 12) leads to undesirable re-

sults. This is because oversized tokens are not conducive

to textures learning. In our model, we choose 4, 6, and 8
scales as the token size in CFT.

5. Limitations

In this section, we visualize the failure cases of TTVSR

in Fig. 7. The motion trajectories are inaccurate when ro-

tation occurs and useful information cannot be transferred

Table 6. Ablation study results of cross-scale feature tokenization

(CFT) module on the REDS4 [29] dataset, “S2” and “S3” repre-

sent extracting features from two and three scales, respectively.

TTVSR can be interpreted as “Base+TG+TA+CFT(S3)”.

Method Token sizes in CFT PSNR/SSIM

Base+TG+TA 4 31.99/0.9007

Base+TG+TA+CFT(S2) 4, 6 32.08/0.9011

Base+TG+TA+CFT(S3) 4, 6, 8 32.12/0.9021
Base+TG+TA+CFT(S3.1) 6, 9, 12 31.95/0.9004

Base+TG+TA+CFT(S3.2) 8, 12, 16 31.91/0.8991

GTw/o CFT w/ CFT
Figure 6. Example of without and with the cross-scale feature tok-

enization (CFT) on the REDS4 [29] dataset. CFT can transfer the

clearer textures from larger scales to restore the detailed textures.

TTVSR(Ours) GTFrame 50 IconVSRMuCAN

Figure 7. A failure case when rotation occurs.

through it, thus limiting the performance of our method.

However, due to the high difficulty of modeling rotation,

other SOTA methods also fail to obtain better performance.

It is notable that TTVSR still achieves greater gains than

other methods through its powerful long-range modeling

ability. More analyses can be found in the supplementary.

6. Conclusion

In this paper, we study video super-resolution by lever-

aging long-range frame dependencies. In particular, we pro-

pose a novel trajectory-aware Transformer (TTVSR), which

is one of the first works to introduce Transformer architec-

tures in video super-resolution tasks. Specifically, we for-

mulate video frames into pre-aligned trajectories of visual

tokens, and calculate attention along trajectories. To imple-

ment such formulations, we propose a novel location map to

record trajectories, and the location map can online update

efficiently by design. TTVSR significantly mitigates com-

putational costs and enables Transformers to model long-

range information in videos in an effective way. Experimen-

tal results show clear visual margins between the proposed

TTVSR and existing SOTA models. In the future, we will

focus on 1) evaluating our method in more low-level vision

tasks, and 2) extending the trajectory-aware Transformer to

high-level vision tasks by more explorations.
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